Patents

For a more up to date list of my patents, please see my Google Scholar.

Question answering from minimal context over documents
#5
2022
Sewon Min, Victor Zhong, Caiming Xiong, and Richard Socher
A natural language processing system that includes a sentence selector and a question answering module. The sentence selector receives a question and sentences that are associated with a context. For a question and each sentence, the sentence selector determines a score. A score represents whether the question is answerable with the sentence. Sentence selector then generates a minimum set of sentences from the scores associated with the question and sentences. The question answering module generates an answer for the question from the minimum set of sentences.

Generating dual sequence inferences using a neural network model
#4
2021
Victor Zhong, Caiming Xiong, and Richard Socher
A computer-implemented method for dual sequence inference using a neural network model includes generating a codependent representation based on a first input representation of a first sequence and a second input representation of a second sequence using an encoder of the neural network model and generating an inference based on the codependent representation using a decoder of the neural network model. The neural network model includes a plurality of model parameters learned according to a machine learning process. The encoder includes a plurality of coattention layers arranged sequentially, each coattention layer being configured to receive a pair of layer input representations and generate one or more summary representations, and an output layer configured to receive the one or more summary representations from a last layer among the plurality of coattention layers and generate the codependent representation.

Dynamic coattention network for question answering
#3
2021
Victor Zhong, Caiming Xiong, and Richard Socher
The technology disclosed relates to an end-to-end neural network for question answering, referred to herein as “dynamic coattention network (DCN)”. Roughly described, the DCN includes an encoder neural network and a coattentive encoder that capture the interactions between a question and a document in a so-called “coattention encoding”. The DCN also includes a decoder neural network and highway maxout networks that process the coattention encoding to estimate start and end positions of a phrase in the document that responds to the question.

Dialogue state tracking using a global-local encoder
#2
2021
Victor Zhong, Caiming Xiong, and Richard Socher
A method for maintaining a dialogue state associated with a dialogue between a user and a digital system includes receiving, by a dialogue state tracker associated with the digital system, a representation of a user communication, updating, by the dialogue state tracker, the dialogue state and providing a system response based on the updated dialogue state. The dialogue state is updated by evaluating, based on the representation of the user communication, a plurality of member scores corresponding to a plurality of ontology members of an ontology set, and selecting, based on the plurality of member scores, zero or more of the plurality of ontology members to add to or remove from the dialogue state. The dialogue state tracker includes a global-local encoder that includes a global branch and a local branch, the global branch having global trained parameters that are shared among the plurality of ontology members and the local branch having local trained parameters that are determined separately for each of the plurality of ontology members.

Neural network based translation of natural language queries to database queries
#1
2020
Victor Zhong, Caiming Xiong, and Richard Socher
A computing system uses neural networks to translate natural language queries to database queries. The computing system uses a plurality of machine learning based models, each machine learning model for generating a portion of the database query. The machine learning models use an input representation generated based on terms of the input natural language query, a set of columns of the database schema, and the vocabulary of a database query language, for example, structured query language SQL. The plurality of machine learning based models may include an aggregation classifier model for determining an aggregation operator in the database query, a result column predictor model for determining the result columns of the database query, and a condition clause predictor model for determining the condition clause of the database query. The condition clause predictor is based on reinforcement learning.